Share to Facebook Share to Twitter Share to LinkedIn Pinterest Email

Einstein Image: Watching Actin Polymerize

Einstein Image: Watching Actin Polymerize

By Larry Katzenstein

Cell movement is essential for crucial biological processes. It can help heal wounds but also lead to the spread of cancer cells (metastasis). It’s triggered when actin protein molecules combine, or polymerize, into actin filaments. Growing actin filaments push the cell membrane outward, forming projections called lamellipodia that propel the cell.

Visualizing this highly dynamic activity has proved challenging. To find the stains and preservation techniques that best capture actin polymerization within lamellipodia, researchers in Einstein’s Analytic Imaging Facility and the lab of John Condeelis, Ph.D., took motile cells from a rat breast cancer cell line, preserved (fixed) them in five different ways, and labeled the actin with nine different stains. The double-stained image shown here, using structural illumination microscopy, was judged the most accurate and detailed.

Phalloidin Alexa-488 (green) revealed most of the cell’s actin filament network. Anti-actin antibody AC15 Alexa-555 (red) showed actin staining that was limited to areas closer to the membrane.

Image credit: Vera DesMarais, Ph.D., and Robert Eddy, Ph.D.

Share to Facebook Share to Twitter Share to LinkedIn Share to Pinterest Email

More From Einstein

The Einstein Difference
Match Day Video:
Class of 2021
Residents Respond to COVID Surge
Einstein Among Top in Research Funding
Einstein Students Join Vaccination Effort
Hispanic Health Foundation Scholarships
Dennis Shields Postdoctoral Prizes
Marmur Awards Marks 25 Years
Einstein Celebrates Black History
The Women Who Battle Blood Cancer
Hispanic Heritage Month
Freeing Immune Cells to Combat Cancer

Content

Research Notes
Motivations: Donors & Alumni

Share

Share to Facebook Share to Twitter Share to LinkedIn Email

Past Issues

Download Magazine

Search

Subscribe